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Approximating tail probabilities of noncentral distributions

Suojin Wang and H. L. Gray
Department of Statistical Science
Southern Methodist University

Abstract

Gray and Wang's (1991) general method for approximating tail probabilities is applied to the
cases of noncentral x?, F and t distributions. The validity of such applications is established. The
resulting approximations are easy to compute. Numerical results show the great accuracy of the
approximations for all three most commonly used noncentral distributions.

Keywords: GS, )-transform, noncentral x?, noncentral F, noncentral t, tail probability.

1. Introduction

Calculating the tail pro.abilities of noncentral distributions such as noncentral Y%, F and t is a
major step in many statistical applications. However, these distributions do not have a simple closed
form for the camulative distribution functions (CDFs) which may be expressed in the form of infinite
series only. Many methods have been proposed for approximating the CDFs of these noncentral
distributions by truncating the infinite series or using central distributions as approximations. These
methods are designed for each specific distribution.

Taking a totally different approach from the viewpoint of the Generalized Jackknife, Gray and
Wang (1991) have introduced a general method referred to as the stm)-transformation for finding
functions which are easy to evaluate and give very good approximations to tail probabilities. The
transformation is based only on a general class of differential equations that include the specified
density function in the solution set. As a result this method applies to a broad class of distributions.

Since the densities of noncentral distributions are themselves in the form of infinite series, it is far




from obvious how the conditions for the Gl(,m)~tra.nsformation are met in these cases. In this note we
show that the three most commonly used noncentral distributions (noncentral xz, F and t) all satisfy
the conditions so that the Ggm)-transformation provides a good alternative in approximating the tail
probabilties of these distributions. Its high degree of accuracy even in the extreme tails is maintained,
as will be shown in numerical examples.

We first briefly review the Ggm)-transformation. Let f be a density function and assume that we

wish to approximate the tail probability

x
G(x):/ f(t) dt . (1)
X
Let
%k,
U =x K3 ==,
=0 x

where ap o # 0 and £ is an integer with € < k. Suppose that f(x) satisfies the following differential
equation

Um() £ ™) + Uy () 7Y

(X)+...4+U0,(x)f(x) ~f(x)=0, (2)
for some collection of l7k’s. where m is assumed to be the smallest possible integer such that (2) holds.

Using the idea of the Generalized Jackknife, Gray and Wang (1991) define the Gg,m)%ransformation

approximating G(x) in (1) as

0 f(x) f(N—l)(x)
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where

—i j—1
{xll l+lf(x)}0 )‘ i=1....0,
(i j—1
a-u-(x) = {x 2 H‘n-"lf"(x)}(J ) , i=n+l,...,2n,
L., —i - - j—1
{x i —iH(m—1)nd(m ‘)(x)}(" ), i = (m=1n+1, ..., N,
forj=1,...,N+]1,and N = mn.

As shown in Gray and Wang (1991), most commonly used simple continuous distributions
including those in the Pearson family satisfy (2) for m = 1. Furthermore, it has been shown that
under mild regularity conditions,

: (m)
nh_ranx Gn '[f(x); a.:(x)] = G(x) . (4)

Gray and Wang (1991) have examplified the extraordinary accuracy of the Gflm)-transform for n as

small as 2 or 3.

2. Noncentral x? distribution

The first application of the Gglm)-transformation we consider is to the noncentral chi-squared
distribution \;(2(/\), where k is the degree of {freedom and A is the noncentrality parameter. Cox and
Reid (1987) obtain an approximation to the distribution of x'i()) by adding a small perturbation to
the corresponding central xi random variable when X is small relative to k. Cohen (1988) and Posten
{1989) have developed algorithms for the distribution of x'i()). These algorithms require evaluating
either the central xi distribution function or the distribution functions of x'i'"(/\) for the lowest degrees
of freedom 1 = 1, 2 and 3.

The density of x'i(A) can be expressed as (Johnson and Kotz, 1970, p. 132)

4

P 4
=" L TaTwren

—O+X)/2 o (A)f xk/? +r—1

v x> 0. (5)




Now note that
-2
(0 = M g0 oF, (-: 5 ), ®

where g, (x) = X1 K- /(1‘(‘5‘) oK/ ’) is the density of x} ,

Fi-ibin) =3 &
—ibjz) =
0m1 =0 l"(b):
is a hypergeometric function (Rainville, 1960, p. 74) and
r=0,
r=1,2,.

1,
(b)e = { b(b+1) ... (b+r—1).

Let u = oF,(—: b: z). It has been shown (Rainville, 1960, p. 109) that

(8)
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Substituting u = eA/zf(x)/gk(x) into {(8) and after some algebra we have

x 00 + (x + (2-5)) (o + 2K=A g = 0
l)/x) gk(x). We have therefore shown that f(x)

9)

where we used the fact that g;‘(x) = (—% + (% -
satisfies (2) with m = 2 and €, = ¢, = 0. Hence the application of the Gnm -transform, denoted by

ng)[f(x): a;j(x)], is straightforward as long as f(r)(x), r=20,1,..., 2n+1, are obtained.
Taking r-th derivative of (9) and after some algebra we have the recursive formula




f(r+2)(x) = {(% —-2—r~—x) 11r+1)(x) + (t-'% -l—r) f(r)(x) - 5 [(r_l)(x)}/x , (10)
forr=1,2,... . From (9) it is easily seen that equation (10) is also valid for r = 0 if we define

f(—l)(x) = 0. Thus we need only to evaluate f(x) and f'(x). But from (6) we have

- -2
fo'= (- 5+ 522) 100 + & Vg 00 oFi(— 52 &), (1)
2 2x 2k k 4

By (6) and (11), it is sufficient to compute a hypergeometric function of the form

X T o0
OFI(_; b: Z) = z I‘(b) = Z Cr, (12)
r=0 V=0
o
where ¢y = 1. ¢ = —2—— ¢y, t > I. The series in (12) converges as quickly as Y z'_r?
r(btr—1) r=1 (1)

asymptotically. Note that Levine and Sidi's (1981) d-transformation is useful to accelerate the
convergence of the series in {(12).
To compute Gﬁ,')[f(x): aij(x)] in (3) a subroutine for computing the determinant of a matrix is

normally required. But when n = 1 it is easily derived that in the noncentral y? case,

G110 ago] = A (13)
where

A(x) = [—%(x—%k—/\-kﬁ)— N U »3)] £%(x)

+ [g(—5x+A+5k~20)—(

L1

—2)(k —3)]f2(x)t‘(x)

+ [t 10 —<2(F (0




B(x) = [g(—x+k+x—4)—§+2] (t‘(x))’{f(—u %‘5+/\-—6) + g(k+,\_4)(2—k)]1(x)ﬂ(x)
- 1—16(—)(+k+)\—4)2 2(x).

(2) (2)

Table 1 provides some selected values of G ’. Rapid convergence of an as n increases is
evident; great accuracy is obtained for n as small as 2. It is seen that the approximation is particularly
useful for extreme tails. We used a finite sum to approximate the series in (12), and therefore f(x) and
f(x). In Table 1, 1540 terms were needed depending on different parameters to get at least 12
significant digits correct for f(x) and f’(x). Applying Levine and Sidi’s (1981} acceleration method
improves this by at least 3 more significant digits. However the quick convergence in (12) makes it
generally unnecessary to use Levine and Sidi’s method. In this and the following applications, we used

the IMSL subroutine LINV3F to calculate determinants. Any other efficient algorithms can be used for

this purpose.

3. Noncentral F distribution
We now consider the application of the Gslm)-transform to noncentral F distributions. Despite
the different structures of the noncentral F and noncentral x? distributions. a similar procedure can be
developed. Like in the noncentral y° case our approach is different from those usual ones which use
central F distributions as approximations; see Hirotsu (1979). The density of a noncentral F
distribution with degrees of freedom k and p and noncentrality parameter A (denoted by FL’p())) is

(Johnson and Kotz, 1970, p. 191)

c-/\/z(%)k/z yk/z - r(k_;—_p + r) % vy \F
gly) = "
1 ﬁ)’

[‘(%’)(1 + % y)(k+p)/2 r=0 r! F(% +r1) +

ky
m) | -

—A/2 k+p, k
=e by 1F1(T; 3

[ -1




where

L TE) B
O T (g

is the density for a central F distribution with degrees of freedom k and p, and

ey R (a)
Fi(a; b; 2) = rgo }_'(_b;_; P

is a hypergeometric function. Since

00 ) 0
G(y):/ g(t)dt:/ g(g s)gds=/ f(s) ds , (15)
. y X X
where x = % Y,
fix) = (P x) P = _’\/2}] p F k+p k. _Ax 16
(x)_‘gkxk-e k’p kxll 2'2‘ 2(1+X) . ( )

we need only to consider the transformed density f{x). Let u = F (a; b; z). Using the fact that
(Rainville, 1960. p. 124)

248 4 b—g) ¥ —au= (17)

and after lengthy algebra similar to those in Section 2 we can obtain that

ol 2 s a1 e o

Comparing (18) with (2), it is readily seen that m = 2, ¢; = 1 and ¢; = 2.
A recursive formula for higher order derivatives of f(x) can be easily obtained by taking

derivatives on both sides of (18) and by the fact that

(hl(x) hz(x))(i) = i ('J) b3 (x) by, i=12, ...
j=0




It is therefore only necessary to evaluate f(x) and f'(x). But

—~A/2 k/2 —
fx) = [k_g k+ ]f( . Brppr £/ | l(ng ki2 ax ) 19)
| 2x 2(1 k 2 ! ' 2(14x) )
@ e e P (1+3)

so that the essential part is to compute ,F,(a; b; z). Similar to (12),
Fi(a; b; 2) = z d , (20)
_ _(a+r—1)z _ o ) XTI
where dy = 1, d; = m dp—;,r=1,2,.... Therefore \F,(a; b; z) converges as fast as g T

asymptotically.

Selected values of the ng)-transform (n = 1, 2, 3) are given in Table 2. It is clearly seen that n
= 2 or 3 is generally sufficient in most applications. In Table 2, up to 50 terms in (20) were used to
approximate f(x)} in (16) and f'(x) in (19) to at least 12 significant digits. The last column is the
Edgeworth-series approximation by Mudholkar, Chaubey and Lin (1976). Table 1 shows that for n as
small as 3 the general method ng) is more accurate in the tail than the Edgeworth-series

approximation designed only for the noncentral F.

4. Noncentral t distribution
This section concerns with noncentral t distributions. Kraemer and Paik (1979} proposed
approximations based on central t distributions assuming that the noncentrality parameter is small
relative to the degree of freedom. As we have mentioned earlier, our method does not require such
assumption on the noncentrality parameter. The density of a noncentral t distribution with k degrees

of freedom and noncentrality parameter A (denoted by t{((/\)) is (Johnson and Kotz, 1970, p. 205)

e_Az/Q( K )(k+1)/2 g ket
k
2

r( 2 )(ﬁAy)r o
) tg) r! myz ’ (21)




Let x = 1 4+ y?/k. It follows that

x 0 /2 k [= o)
Gy)= [ swdt= [ g({ke—1)}"") ——K—ds= [ f(s)ds, (22)
{ Z ( )2{k(s—1)}’/’ [

where
/2 k
2{k(x—])}1/2

—A%)2 r(kﬂl) r
: ; ) (@0-1)
W7 r(k)(x—l)llzx(k+l)/2 { = r;§+1} r x)

f(x) = g {k(x—1)}'

—
L0
(2

- o (K S 1h
o7 T(kyx—1) /KT
-2 (g
= (k) _k/2+1 12 22 X -
N7 F(ﬁ) X

= fi(x) -+ fo(x) . (24)

1'1 and f, are defined by the first and second term in (23), respectively. It is easily derived that

2 2
N {(k+2)(A IR\ B (LI (SAE3, >} {0, 25)

4x?

since using (17) and the same technique as that used in Sections 2 and 3 we can show that both f;(x)
and f,(x) satisfy the differential equation (25). Comparing (25) with (2) we have m = 2, ¢, = 1 and {,

= 2. As in the case of the noncentral )(2 {or F), a recursive formula for f(l)(x) (i=2,3,...)in terms




of lower order derivatives can be easily obtained from (25). Thus we need only the evaluation of f(x)

and f'(x) to calculate all required derivatives. It is easily obtained from (24) that

~)\?
/2 r(531) A1) (k+3.
1 ’

F
4T r(%)(x—l)’/ 2, (k+s)/2 !

t\elu
e
N
—
!

Py

N
S———

f(x) = <2(I_11) - %*;l)rl(xn

3 A2 ok
Cke2, 2%e rk+1)k+2) (ka5 2 (1L )
Ix 2{x) + k/2+3 112+ U S X : (26)
6427 I(%) x

It follows from (23) that evaluation of hypergeometric functions of type ;F,(a: b; z) is a main step
which has been addressed in Section 3.
2
Some numerical results are given in Table 3 to show the quick convergence of the Gg )-transform.

Like in the previous cases, n = 2 or 3 is usually sufficiently accurate.

5. Conclusion
N o o (m)

In this paper. we have considered the applications of the general method of G -transform for
tail probabilities to the three most commonly used noncentral distributions. The validity of such
applications was verified and accurate numerical results were given.

Except for calculating the density and its derivatives, the Gfl )-transform does not use any
particular properties of a specified distribution, making it a very general method. The method is also
e . . , . m
s« ily implemented in practice. A short self-explanatory FORTRAN subroutine for the Gg, )-

transform is given in the appendix.
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APPENDIX: A SUBROUTINE FOR THE Ggm)—TRANSFORM

SUBROUTINE GMNTRANS (M, N, L, X, FDVEC, GMN)

THIS SUBROUTINE CALCULATES THE GMN-TRANSFORM.
INPUT: M, N, L, X, FOVEC; OUTPUT: GMN(1),...,GMN(N).
M IS DEFINED IN EQUATION (2);
N IS THE MAXIMUM ORDER OF THE TRANSFORM;
L = (L(1),...,L(M)) IS DEFINED IN EQUATION (2) (SET
L(I)=I, IF L(I) UNKNOWN);
FDVEC = (FDVEC(1),...,FDVEC(M*N+M)), WHERE FDVEC(I)
IS THE (I-1)TH DERIVATIVE OF THE DENSITY AT X.

OO0O0OOOOOO0N

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION FDVEC(31), L(3), A1(30,30), A2(30,30), GMN(15)
DIMENSION WKA(30), JVEC(30,30), PDM(30,31), B(1)
IJOB = 4
DO 100 NI=1, N
NTL = 1+M#*NI
Al(1,1) = 1.DO
A2(1,1) = 0.DO
DO 10 J = 2, NTL
Al1(1,J) = 0.DO
10 A2(1,J) = FDVEC(J-1)
DO 40 J = 1, NTL
JVEC(1,J) = 1
JVEC(J,J) = 1
IF (J.EQ.1.0R.J.EQ.2) GO TO 40
IF (J.EQ.3) GO TO 30
JMD2 = J/2-1
DO 20 K = 1, JMD2
JVEC (K+1,J)
20 JVEC (J-K,J)
30 JD = (J-1)/2
IF (J-1.EQ.JD*2) JVEC(JD+1,J) = JVEC(JD,J)*(JD+1)/JD
40 CONTINUE
DO 60 K = 0, M-1
DO 60 I = 1, NI
POW = L(K+1)-I+1
PDM(I+K*NI+1,1) = X*#POW
DO 60 J = 1, NTL
PDM(I+K*NI+1,J+1) = PDM(I+K*NI+1,J)*(POW-J+1)/X
Al(I+K*NI+1,J) = 0.DO
DO 50 I1 = 1, J

nunon
o

ion

JVEC(K,J) *(J-K) /K
JVEC (K+1,J)

50 Al (I+K*NI+1,J) = AY(I+K*NI+1,J)+JVEC(I1,J)
$ *PDM(I+K#NI+1,11) *FDVEC(J-I1+K+1)
A2(I+K#NI+1,J) = AL (I+K*NI+1,bJ)
60 CONTINUE
Dl = 10.D0

CALL LINV3F(Al, B, IJOB, NTL, 30, D1, D2, WKA, IER)
HERE WE USE IMSL SUBROUTINE LINV3F TO CALCULATE
THE DETERMINANT OF A MATRIX.

OTHER EFFICIENT SUBROUTINES CAN ALSO BE USED HERE.

D3 = 10.DO

CALL LINV3FP(A2, B, IJOB, NTL, 30, D3, D4, WKA, IER)

100  GMN(NI) = D3/D1%2.D0##(D4-D2)

RETURN
END

aOno
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Table 1. Relative error = R[approx.] = { | approx.—true |/true}

of approximations to the upper tail of x?(z\).

k A x true value R[GEI)] R[ng) R[ng)
5 1 8 .2466 1.1(2)* 1.5(4) 1.1(4)
13 .07332 2.8(3) 1.5(5) 4.5(7)
21 .003156 4.6(4) 5.1(7) 3.8(9)
5 10 20 2189 6.2(2) 7.9(4) 8.3(6)
26 07497 1.9(2) 1.5(4) 8.4(7)
43 001521 2.3(3) 5.4(6) 5.5(9)
2 10 44 1674 8.1(2) 8.0(3) 6.6(4)
50 06824 3.2(2) 1.8(3) 9.9(5)
70 001337 3.7(3) 4.8(5) 7.8(7)
25 25 62 1616 9.5(2) 9.4(3) 7.4(4)
70 06159 3.7(2) 2.0(3) 1.0¢4)
94 .001295 4.7(3) 6.4(5) 1.1(6)

*LI2)=11x 1077
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Table 2. Relative error = R[approx.] = { | approx. — true | /true}

of approximations to the upper tail of Fl" p(A).

RiG{Y

p A y true value R[ng) Edgeworth
2 4 2 5 .2003 2.6(4)* 1.4(7) 1.7(5)
10 07906 2.1(5) 4.2(9) 2.9(3)
33 .01065 2.1(7) 5.1(12) 6.1(3)
2 4 15 20 2135 9.1(4) 4.9(7) 4.2(4)
42 .06946 3.3(5) 5.5(9) 8.1(3)
106 .01353 6.7(7) 2.3(11) 7.6(3)
2 20 10 10 1817 1.5(2) 1.3(5) 1.5(3)
15 05327 1.7(3) 6.4(7) 3.0(3)
25 .005622 1.2(4) 5.3(8) 5.9(3)
20 20 20 3 1775 1.7(2) 8.1(4) 4.5(4)
4 05722 2.2(3) 5.3(5) 6.6(5)
10 002323 1.0(5) 3.0(8) 1.2(2)
*26(4) =26 x 10~*
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Table 3. Relative error = R[approx.] = { | approx. —true |/true}

of approximations to the upper tail of t{‘(/\).

y true value R[G?) R[ng) R[ng)

2 .2564 2.5(2)* 1.1(3) 1.2(4)

4 .06390 1.3(3) 3.8(6) 5.7(8)
8 .01012 7.3(5) 1.0(8) 1.9(11)

7 12 2087 2.9(2) 5.4(4) 7.1(4)
19 .06397 3.4(3) 3.6(5) 1.9(5)

37 .009575 2.0(4) 1.4(8) 1.9(9)

i 10 1263 5.2(2) 1.7(3) 3.5(5)
12 04187 1.6(2) 2.2(4) 2.1(6)

17 003113 2.5(3) 6.9(6) 1.3(%)

x 10~




